ESC Guidelines

Guidelines on the Diagnosis and Management of Pericardial Diseases

Executive Summary

The Task Force on the Diagnosis and Management of Pericardial Diseases of the European Society of Cardiology

Task Force members, Bernhard Maisch, Chairperson* (Germany), Petar M. Seferović (Serbia and Montenegro), Arsen D. Ristić (Serbia and Montenegro), Raimund Erbel (Germany), Reiner Rienmüller (Austria), Yehuda Adler (Israel), Witold Z. Tomkowski (Poland), Gaetano Thiene (Italy), Magdi H. Yacoub (UK)

ESC Committee for Practice Guidelines (CPG), Silvia G. Priori (Chairperson) (Italy), Maria Angeles Alonso Garcia (Spain), Jean-Jacques Blanc (France), Andrzej Budaj (Poland), Martin Cowie (UK), Veronica Dean (France), Jaap Deckers (The Netherlands), Enrique Fernandez Burgos (Spain), John Lekakis (Greece), Bertil Lindahl (Sweden), Gianfranco Mazzotta (Italy), Joao Morais (Portugal), Ali Oto (Turkey), Otto A. Smiseth (Norway)

Document Reviewers, Gianfranco Mazzotta (CPG Review Coordinator) (Italy), Jean Acar (France), Eloisa Arbustini (Italy), Anton E. Becker (The Netherlands), Giacomo Chiaranda (Italy), Yonathan Hasin (Israel), Rolf Jenni (Switzerland), Werner Klein (Austria), Irene Lang (Austria), Thomas F. Lüscher (Switzerland), Fausto J. Pinto (Portugal), Ralph Shabetai (USA), Maarten L. Simoons (The Netherlands), Jordi Soler Soler (Spain), David H. Spodick (USA)

Table of contents

Preamble ... 588
Introduction ... 588
Aetiology and classification of pericardial disease ... 588
Pericardial syndromes ... 588
 Congenital defects of the pericardium .. 588
 Acute pericarditis .. 588
 Chronic pericarditis .. 591
 Recurrent pericarditis .. 591
 Pericardial effusion and cardiac tamponade .. 592
 Constrictive pericarditis ... 593
 Pericardial cysts .. 595
 Specific forms of pericarditis .. 597
 Viral pericarditis .. 597

 Bacterial pericarditis .. 598
 Tuberculous pericarditis ... 598
 Pericarditis in renal failure .. 600
 Autoreactive pericarditis and pericardial involvement in systemic autoimmune diseases ... 600
 The post-cardiac injury syndrome: postpericardiotomy syndrome .. 600
 Postinfarction pericarditis .. 601
 Traumatic pericardial effusion and haemopericardium in aortic dissection 601
 Neoplastic pericarditis .. 603
 Rare forms of pericardial disease .. 603
 Fungal pericarditis .. 603
 Radiation pericarditis ... 604
 Chylopericardium ... 604
 Drug- and toxin-related pericarditis ... 605
 Pericardial effusion in thyroid disorders ... 605
 Pericardial effusion in pregnancy .. 605
 Acknowledgements .. 605
 References ... 605

*Corresponding author: Chairperson: Bernhard Maisch, MD, FESC, FACC, Dean of the Faculty of Medicine, Director of the Department of Internal Medicine/Cardiology, Philipps University, Marburg, Baldingerstrasse 1, D-35033 Marburg, Germany. Tel.: +49-6421-286-6462; fax: +49-6421-286-8954.
E-mail address: bermaisch@aol.com (B. Maisch).

0195-668X/S - see front matter © 2004 Published by Elsevier Ltd on behalf of The European Society of Cardiology.
Preamble

Guidelines and Expert Consensus documents aim to present all the relevant evidence on a particular issue in order to help physicians to weigh the benefits and risks of a particular diagnostic or therapeutic procedure. They should be helpful in everyday clinical decision-making.

A great number of Guidelines and Expert Consensus Documents have been issued in recent years by different organisations, the European Society of Cardiology (ESC) and by other related societies. By means of links to web sites of National Societies several hundred guidelines are available. This profusion can put at stake the authority and validity of guidelines, which can only be guaranteed if they have been developed by an unquestionable decision-making process. This is one of the reasons why the ESC and others have issued recommendations for formulating and issuing Guidelines and Expert Consensus Documents.

In spite of the fact that standards for issuing good quality Guidelines and Expert Consensus Documents are well defined, recent surveys of Guidelines and Expert Consensus Documents published in peer-reviewed journals between 1985 and 1998 have shown that methodological standards were not complied within the vast majority of cases. It is therefore of great importance that guidelines and recommendations are presented in formats that are easily interpreted. Subsequently, their implementation programmes must also be well conducted. Attempts have been made to determine whether guidelines improve the quality of clinical practice and the utilisation of health resources.

The ESC Committee for Practice Guidelines (CPG) supervises and coordinates the preparation of new Guidelines and Expert Consensus Documents produced by Task Forces, expert groups or consensus panels. The Committee is also responsible for the endorsement of these Guidelines and Expert Consensus Documents or statements.

Introduction

The strength of evidence related to a particular diagnostic or treatment option depends on the available data: (1) level of evidence A: multiple randomised clinical trials or meta-analyses; (2) level of evidence B: a single randomised trial or non-randomised studies; and (3) level of evidence C: consensus opinion of the experts. Indications for various tests and procedures were ranked in three classes:

Class I: Conditions for which there is evidence and/or general agreement that a given procedure or treatment is useful and effective.

Class II: Conditions for which there is conflicting evidence and/or a divergence of opinion about the usefulness/efficacy of a procedure or treatment.

Class IIa: Weight of evidence/opinion is in favour of usefulness/efficacy.

Class IIb: Usefulness/efficacy is less well established by evidence/opinion.

Class III: Conditions for which there is evidence and/or general agreement that the procedure/treatment is not useful/ effective and in some cases may be harmful.

Aetiology and classification of pericardial disease

The spectrum of pericardial diseases consists of congenital defects, pericarditis (dry, effusive, effusive-constrictive, and constrictive), neoplasm, and cysts. The aetiological classification comprises: infectious pericarditis, pericarditis in systemic autoimmune diseases, type 2 (auto) immune process, postmyocardial infarction syndrome, and auto-reactive (chronic) pericarditis (Table 1).

Pericardial syndromes

Congenital defects of the pericardium

Congenital defects of the pericardium (1/10.000 autopsies) comprise partial left (70%), right (17%) or total bilateral (rare) pericardial absence. Additional congenital abnormalities occur in ~30% of patients. Most patients with a total pericardial absence are asymptomatic. Holomeral cardiac displacement and augmented heart mobility impose an increased risk for traumatic aortic dissection. Partial left side defects can be complicated by herniation and strangulation of the heart through the defect (chest pain, shortness of breath, syncope or sudden death). Surgical pericardioplastic (Dacron, Gore-tex, or bovine pericardium) is indicated for imminent strangulation.

Acute pericarditis

Acute pericarditis is dry, fibrinous or effusive, independent from its aetiology. The diagnostic algorithm can be derived from Table 2. A prodrome of fever, malaise, and myalgia is common, but elderly patients may not be febrile. Major symptoms are retrosternal or left precordial chest pain (radiates to the trapezius ridge, can be pleuritic or simulate ischemia, and varies with posture) and shortness of breath. The pericardial friction rub can be transient, mono-, bi- or triphasic. Pleural effusion may be present. Heart rate is usually rapid and regular. Micro-voltage and electrical alternans are reversible after effusion drainage. Echocardiography is essential to detect effusion, concomitant heart or paracardial disease. Perimyocarditis is evidenced by global or regional myocardial dysfunction, elevations of troponins I and T, MB creatine-kinase, myoglobin and tumour necrosis factor. Auscultation of a new S3 heart sound, convexly elevated J-ST segment in the ECG, fixation of Indium-111 labelled antimyosin antibodies, and structural changes in MRI are indicative, but only endomyocardial/epimyocardial biopsy is diagnostic.
Table 1 Review of aetiology, incidence and pathogenesis of pericarditis¹⁻³

<table>
<thead>
<tr>
<th>Aetiology</th>
<th>Incidence (%)</th>
<th>Pathogenesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infectious pericarditis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viral (Coxsackie A9, B1-4, Echo 8, Mumps, EBV, CMV, Varicella, Rubella, HIV, Parvo B19, etc.)</td>
<td>30–50¹</td>
<td>Multiplication and spread of the causative agent and release of toxic substances in pericardial tissue cause serous, serofibrinous or haemorrhagic (bacterial, viral, tuberculous, fungal) or purulent inflammation (bacterial)</td>
</tr>
<tr>
<td>Bacterial (Pneumo-, Meningo-, Gonococcosis, Hemophilus, Treponema pallidum, Borreliosis, Chlamydia, Tuberculosis, etc.)</td>
<td>5–10¹</td>
<td></td>
</tr>
<tr>
<td>Fungal (Candida, Histoplasma, etc.)</td>
<td>Rare</td>
<td></td>
</tr>
<tr>
<td>Parasitary (Entameba histolytica, Echinococcus, Toxoplasma...)</td>
<td>Rare</td>
<td></td>
</tr>
<tr>
<td>Pericarditis in systemic autoimmune diseases</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systemic lupus erythematosus</td>
<td>30²</td>
<td>Cardiac manifestations of the basic disease, often clinically mild or silent</td>
</tr>
<tr>
<td>Rheumatoid arthritis</td>
<td>30²</td>
<td></td>
</tr>
<tr>
<td>Spondylitis ankylosans</td>
<td>1²</td>
<td></td>
</tr>
<tr>
<td>Systemic sclerosis</td>
<td>>50²</td>
<td></td>
</tr>
<tr>
<td>Dermatomyositis</td>
<td>Rare</td>
<td></td>
</tr>
<tr>
<td>Periarteritis nodosa</td>
<td>Rare</td>
<td></td>
</tr>
<tr>
<td>Reiter’s syndrome</td>
<td>~2²</td>
<td></td>
</tr>
<tr>
<td>Familial Mediterranean fever</td>
<td>0.7²</td>
<td></td>
</tr>
<tr>
<td>Type 2 (auto)immune process</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rheumatic fever</td>
<td>20–50²</td>
<td>Secondary, after infection/surgery</td>
</tr>
<tr>
<td>Postcardiotomy syndrome</td>
<td>~20³</td>
<td>Mostly in acute phase</td>
</tr>
<tr>
<td>Postmyocardial infarction syndrome</td>
<td>1–5³</td>
<td>10–14 days after surgery</td>
</tr>
<tr>
<td>Autoreactive (chronic) pericarditis</td>
<td>23.1¹³</td>
<td>DDg P. epistemocardica</td>
</tr>
<tr>
<td>Pericarditis and pericardial effusion in diseases of surrounding organs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute MI (P. epistemocardica)</td>
<td>5–20³</td>
<td>1–5 days after transmural MI</td>
</tr>
<tr>
<td>Myocarditis</td>
<td>30³</td>
<td>Accompanying epimyocarditis</td>
</tr>
<tr>
<td>Aortic aneurysm</td>
<td>Rare</td>
<td>Dissection: haemorrhagic PE</td>
</tr>
<tr>
<td>Lung infarction</td>
<td>Rare</td>
<td></td>
</tr>
<tr>
<td>Pneumonia</td>
<td>Rare</td>
<td></td>
</tr>
<tr>
<td>Oesophageal diseases</td>
<td>Rare</td>
<td></td>
</tr>
<tr>
<td>Hydropericardium in CHF</td>
<td>Rare</td>
<td></td>
</tr>
<tr>
<td>Paraneoplastic pericarditis</td>
<td>Frequent</td>
<td>No direct neoplastic infiltrate</td>
</tr>
<tr>
<td>Pericarditis in metabolic disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renal insufficiency (uraemia)</td>
<td>Frequent</td>
<td>Viral/toxic/autoimmune</td>
</tr>
<tr>
<td>Myxedema</td>
<td>30³</td>
<td>Serous, cholesterol rich PE</td>
</tr>
<tr>
<td>Addison’s disease</td>
<td>Rare</td>
<td>Membranous leak?</td>
</tr>
<tr>
<td>Diabetic ketoacidosis</td>
<td>Rare</td>
<td></td>
</tr>
<tr>
<td>Cholesterol pericarditis</td>
<td>Very rare</td>
<td>Transudation of cholesterol (sterile serofibrinous PE)</td>
</tr>
<tr>
<td>Pregnancy</td>
<td>Rare</td>
<td></td>
</tr>
<tr>
<td>Traumatic pericarditis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct injury (penetrating thoracic injury, oesophageal perforation, foreign bodies)</td>
<td>Rare</td>
<td>Less frequent after introduction of topical convergent irradiation</td>
</tr>
<tr>
<td>Indirect injury (Non-penetrating thoracic injury, mediastinal irradiation)</td>
<td>Rare</td>
<td></td>
</tr>
<tr>
<td>Neoplastic pericardial disease</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary tumours</td>
<td>35³</td>
<td>Serous or fibrinous, frequently haemorrhagic effusion</td>
</tr>
<tr>
<td>Secondary metastatic tumours</td>
<td>Rare</td>
<td>Accompanying disease during the infiltration of malignant cells</td>
</tr>
<tr>
<td>Lung carcinoma</td>
<td>Frequent</td>
<td></td>
</tr>
<tr>
<td>Breast carcinoma</td>
<td>22³</td>
<td></td>
</tr>
<tr>
<td>Gastric and colon</td>
<td>3³</td>
<td></td>
</tr>
<tr>
<td>Other carcinoma</td>
<td>6³</td>
<td></td>
</tr>
<tr>
<td>Leukemia and lymphoma</td>
<td>15³</td>
<td></td>
</tr>
<tr>
<td>Melanoma</td>
<td>3³</td>
<td></td>
</tr>
<tr>
<td>Sarcoma</td>
<td>4³</td>
<td></td>
</tr>
<tr>
<td>Other tumours</td>
<td>7³</td>
<td></td>
</tr>
</tbody>
</table>
Hospitalisation is warranted to determine the aetiology and observe for tamponade as well as the effect of treatment. Nonsteroidal anti-inflammatory drugs (NSAID) are the mainstay (level of evidence B, class I). Indomethacin should be avoided in elderly patients due to its flow reduction in the coronaries. Ibuprofen is preferred for its rare side-effects, favourable impact on the coronary flow, and the large dose range. Depending on severity and response, 300–800 mg every 6–8 hours may be initially required and can be continued for days or weeks, best until the effusion has disappeared. Gastrointestinal protection must be provided. Colchicine (0.5 mg bid) added to an NSAID or as monotherapy also appears to be effective for the initial attack and the prevention of recurrences (level of evidence B, class IIa indication). It is well tolerated with fewer side effects than NSAIDs. Systemic corticosteroid therapy should be restricted to connective tissue diseases, autoreactive or uremic pericarditis. Intrapericardial application avoids systemic side effects and is

<table>
<thead>
<tr>
<th>Table 1 (continued)</th>
<th>Incidence (%)</th>
<th>Pathogenesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idiopathic</td>
<td>3.5%, in other series >50</td>
<td>Serous, fibrinous, sometimes haemorrhagic PE with suspect viral or autoimmune secondary immunopathogenesis</td>
</tr>
</tbody>
</table>

CHF, congestive heart failure; DDg, differential diagnosis; MI, myocardial infarction; P., pericarditis; PE, pericardial effusion.

a Percentage related to the population of 260 subsequent patients undergoing pericardiocentesis, pericardioscopy and epicardial biopsy (Marburg pericarditis registry 1988–2001).

b Percentage related to the incidence of pericarditis in the specific population of patients (e.g., with systemic lupus erythematosus).

c Percentage related to the population of patients with neoplastic pericarditis.

<table>
<thead>
<tr>
<th>Table 2 Diagnostic pathway and sequence of performance in acute pericarditis (level of evidence B for all procedures)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technique</td>
</tr>
<tr>
<td>Obligatory (indication class I)</td>
</tr>
<tr>
<td>Auscultation</td>
</tr>
<tr>
<td>ECG</td>
</tr>
<tr>
<td>Stage I: anterior and inferior concave ST segment elevation. PR segment deviations opposite to P polarity. Early stage II: ST junctions return to the baseline, PR deviated. Late stage II: T waves progressively flatten and invert Stage III: generalised T wave inversions Stage IV: ECG returns to prepericarditis state.</td>
</tr>
<tr>
<td>Echocardiography</td>
</tr>
<tr>
<td>Blood analyses</td>
</tr>
<tr>
<td>Chest X-ray</td>
</tr>
<tr>
<td>Mandatory in tamponade (indication class I), optional in large/recurrent effusions or if previous tests inconclusive (indication class IIa) in small: effusions (indication class IIb)</td>
</tr>
<tr>
<td>Pericardiocentesis and drainage</td>
</tr>
<tr>
<td>Optional or if previous tests inconclusive (indication class IIa)</td>
</tr>
<tr>
<td>CT</td>
</tr>
<tr>
<td>MRI</td>
</tr>
<tr>
<td>Pericardioscopy, pericardial biopsy</td>
</tr>
</tbody>
</table>

Typical lead involvement: I, II, aVL, aVF, and V3–V6. The ST segment is always depressed in aVR, frequently in V1, and occasionally in V2. Occasionally, stage IV does not occur and there are permanent T wave inversions and flattening. If ECG is first recorded in stage III, pericarditis cannot be differentiated by ECG from diffuse myocardial injury, “biventricular strain,” or myocarditis. ECG in Early repolarization is very similar to stage I. Unlike stage I, this ECG does not acutely evolve and J-point elevations are usually accompanied by a slur, oscillation, or notch at the end of the QRS just before and including the J point (best seen with tall R and T waves—large in early repolarisation pattern). Pericarditis is likely if in lead V6 the J point is >25% of the height of the T wave apex (using the PR segment as a baseline).

Cardiac troponin I was detectable in 49% and >1.5 ng/ml in 22% of 69 patients with acute pericarditis (only in those with ST elevation in ECG) investigated by Bonnefoy et al. In another study troponin I was detected in 10/14 patients with a median peak concentration of 21.4 mg/ml (range 0.5 to >50 ng/ml). CK-MB was elevated in 8/14 patients with the median peak of 21 U/l (range 13–43), corresponding to the relative index of 10.2% of the total CK activity.
Constrictions. Covered patients should be observed for recurrences or pericardiocentesis.

Chronic pericarditis

Chronic (>3 months) pericarditis includes effusive (inflammatory or hydropericardium in heart failure), adhesive, and constrictive forms. Symptoms are usually mild (chest pain, palpitations, fatigue), related to the degree of cardiac compression and pericardial inflammation. The diagnostic algorithm is similar as in acute pericarditis (Table 2). The detection of the curable causes (e.g., tuberculosis, toxoplasmosis, myxedema, autoimmune, and systemic diseases) allows successful specific therapy. Symptomatic treatment and indications for pericardiocentesis are as in acute pericarditis. For frequent and symptomatic recurrences balloon pericardiectomy or pericardieectomy should be considered (level of evidence B, indication IIb).

Recurrent pericarditis

The term recurrent pericarditis encompasses (1) the intermittent type (symptom free intervals without therapy) and (2) the incessant type (discontinuation of anti-inflammatory therapy ensures a relapse). Massive pericardial effusion, overt tamponade or constriction are rare. Evidence for an immunopathological process include: (1) the latent period lasting for months; (2) the presence of anti-heart antibodies; (3) the quick response to steroid treatment and the similarity and co-existence of recurrent pericarditis with other auto-

Focus box 1 Pericardiocentesis

Pericardiocentesis is life saving in cardiac tamponade (level of evidence B, class I indication) and indicated in effusions >20 mm in echocardiography (diastole) but also in smaller effusions for diagnostic purposes (pericardial fluid and tissue analyses, pericardioscopy, and epicardial/pericardial biopsy)(level of evidence B, class IIa indication). Aortic dissection is a major contraindication. Relative contraindications include uncorrected coagulopathy, anticoagulant therapy, thrombocytopenia <50000/mm³, small, posterior, and loculated effusions. Surgical drainage is preferred in traumatic haemopericardium and purulent pericarditis.

Pericardiocentesis guided by fluoroscopy is performed in the cardiac catheterisation laboratory with ECG monitoring. Direct ECG monitoring from the puncturing needle is not an adequate safeguard. Right-heart catheterisation can be performed simultaneously, allowing exclusion of constriction. It is prudent to drain the fluid in <1 l steps to avoid the acute right-ventricular dilatation. The subxiphoid approach has been used most commonly, with a long needle with a mandrel (Tuohy or thin-walled 18-gauge) directed towards the left shoulder at a 30° angle to the skin. This route is extrapleural and avoids the coronary, pericardial, and internal mammary arteries. The operator intermittently attempts to aspirate fluid and injects small amounts of contrast. If haemorrhagic fluid is freely aspirated a few millilitres of contrast medium may be injected under fluoroscopic observation (sluggish layering inferiorly indicates that the needle is correctly positioned). A soft J-tip guidewire is introduced and after dilatation exchanged for a multi-holed pigtail catheter. It is essential to check the position of the guidewire in at least two angiographic projections before insertion of the dilator and drainage catheter. Echocardiographic guidance of pericardiocentesis is technically less demanding and can be performed at the bedside. Echocardiography should identify the shortest route where the pericardium can be entered intercostally (usually in the sixth or seventh rib space in the anterior axillary line). Prolonged pericardial drainage is performed until the volume of effusion obtained by intermittent pericardial aspiration (every 4–6 h) fall to <25 ml per day. The feasibility is high (93%) in patients with anterior effusion >10 mm while the rate of success is only 58% with small, posteriorly located effusions. Fluoroscopic and haemodynamic monitoring improve feasibility (93.1% vs. 73.3%) in comparison to emergency pericardial puncture with no imaging control. The tangential approach using the epicardial halo phenomenon in the lateral view significantly increased the feasibility of fluoroscopically guided pericardiocentesis in patients with small effusions (200–300 ml)(92.6% vs. 84.9%) and very small effusions (<200 ml)(89.3% vs. 76.7%). Pericardiocentesis with echocardiography guidance was feasible in 96% of loculated pericardial effusions. Rescue pericardiocentesis guided by echocardiography relieved tamponade after cardiac perforation in 99% of 88 patients, and was the definitive therapy in 82%. The most serious complications of pericardiocentesis are laceration and perforation of the myocardium and the coronary vessels. In addition, patients can experience air embolism, pneumothorax, arrhythmias (usually vasovagal bradycardia), and puncture of the peritoneal cavity or abdominal viscera. Internal mammary artery fistulas, acute pulmonary oedema, and purulent pericarditis were rarely reported. The safety was improved with echocardiographic or fluoroscopic guidance. Recent large echocardiographic series reported an incidence of major complications of 1.3–1.6%. In fluoroscopy-guided percutaneous pericardiocenteses cardiac perforations occurred in 0.9%, serious arrhythmias in 0.6%, arterial bleeding in 1.1%, pneumothorax in 0.6%, infection in 0.3%, and a major vagal reaction in 0.3%. Incidence of major complications was further reduced by utilizing the epicardial halo phenomenon for fluoroscopic guidance.
immune conditions (lupus, serum sickness, polyserositis, postpericardiotomy/postmyocardial infarction syndrome, celiac disease, dermatitis herpetiformis, frequent arthralgias, eosinophilia, allergic drug reaction, and history of allergy). Potential underlying genetic disorders were also reported: autosomal dominant inheritance with incomplete penetrance and sex-linked inheritance (recurrent pericarditis associated with ocular hypertension).

Symptomatic management relies on exercise restriction and the regimen used in acute pericarditis. Colchicine was effective when NSAIDs and corticosteroids failed to prevent relapses. During 1004 months of colchicine treatment, only 13.7% new recurrences occurred. During the 2333 months of follow-up, 60.7% of the patients remained recurrence-free. The recommended dose is 2 mg/day for one or two days, followed by 1 mg/day (level of evidence B, indication I). Corticosteroids should be used only in patients with poor general condition or in frequent crises (level of evidence C, indication IIa). A common mistake is to use a dose too low to be effective or to taper the dose too rapidly. The recommended regimen is: prednisone 1–1.5 mg/kg, for at least one month. If patients do not respond adequately, azathioprine (75–100 mg/day) or cyclophosphamide can be added. Corticoids should be tapered over a three-month period. If symptoms still recur, return to the last dose that suppressed the manifestations, maintain that dose for 2–3 weeks and then recommence tapering. Towards the end of the taper, introduce anti-inflammatory treatment with colchicine or NSAID. Renewed treatment should continue for at least three months. Pericardiectomy is indicated only in frequent and highly symptomatic recurrences resistant to medical treatment (level of evidence B, indication IIa). Before pericardiectomy, the patient should be on a steroid-free regimen for several weeks. Post pericardiectomy recurrences were also demonstrated, possibly due to incomplete resection of the pericardium.

Pericardial effusion and cardiac tamponade

Pericardial effusion may appear as transudate (hydropericardium), exudate, pyopericardium or haemopericardium. Large effusions are common with neoplastic, tuberculous, cholesterol, uremic pericarditis, myxedema, and parasitoses. Effusions that develop slowly can be remarkably asymptomatic, while rapidly accumulating smaller effusions can present with tamponade. Loculated effusions are more common when scarring has supervened (e.g., postsurgical, posttrauma, purulent pericarditis). Massive chronic pericardial effusions are rare (2–3.5% of all large effusions). Cardiac tamponade is the decompensated phase of cardiac compression caused by effusion accumulation and the increased intrapericardial pressure. In “surgical” tamponade intrapericardial pressure is rising rapidly, in the matter of minutes to hours (i.e. haemorrhage), whereas a low-intensity inflammatory process is developing days to weeks before cardiac compression occurs (“medical” tamponade). Heart sounds are distant. Orthopnoea, cough and dysphagia, occasionally with episodes of unconsciousness can be observed. Insidiously developing tamponade may present with the signs of its complications (renal failure, abdominal plethora, shock liver and mesenteric ischaemia). In 60% of the patients, the cause of pericardial effusion may be a known medical condition. Tamponade without two or more inflammatory signs (typical pain, pericardial friction rub, fever, diffuse ST segment elevation) is usually associated with a malignant effusion (likelihood ratio 2.9). Electrocardiography may demonstrate diminished QRS and T-wave voltages, PR-segment depression, ST-T changes, bundle branch block, and electrical alternans (rarely seen in the absence of tamponade). In chest radiography large effusions are depicted as globular cardiomegaly with sharp margins (“water bottle” silhouette). On well-penetrated lateral radiographies, or cine films, pericardial fluid is suggested by lucent lines within the cardiopericardial shadow (epicardial halo). This sign is useful for the fluoroscopic guidance of pericardiocentesis. The separation of pericardial layers can be detected in echocardiography, when the pericardial fluid exceeds 15–35 ml (Fig. 1). The size of effusions can be graded as: (1) small (echo-free space in diastole <10 mm), (2) moderate (10–20 mm), (3) large (>20 mm), or (4) very large (>20 mm and compression of the heart). In the parasternal long-axis view pericardial fluid reflects at the posterior atrioventricular groove, while pleural fluid continues under the left atrium, posterior to the descending aorta. In large pericardial effusions, the heart may move freely within the pericardial cavity (“swinging heart”) inducing pseudo-prolapse and pseudosystolic anterior motion of the mitral valve, paradoxical motion of the interventricular septum, and midsystolic aortic valve closure. Importantly, large effusions generally indicate more serious disease. Intrapерicardial bands, combined with a thick visceral or parietal pericardium are often found after radiation of the chest. Rarely tumour masses, sometimes cauliflower-like, are found within or adjacent to the pericardium and may even masquerade tamponade. Other diagnostic pitfalls are: small loculated effusions, haematoma, cysts, foramen of Morgagni hernia, hiatus hernia, lipodystrophia with paracardial fat, inferior left pulmonary vein, left pleural effusion, mitral annulus calcification, giant left atrium, epicardial fat (best differentiated in CT), and left ventricular pseudoaneurysm. When bleeding into the pericardium occurs and thrombosis develops the typical echolucent areas may disappear, so that cardiac tamponade may be overlooked. Transesophageal echocardiography is here particularly useful as well as in identifying metastases and pericardial thickening. CT, spin-echo and cine MRI can also be used to assess the size and extent of simple and complex pericardial effusions. Effusions measured by CT/MRI tend to be larger than in echocardiography. Up to one-third of patients with asymptomatic large pericardial chronic effusion develop unexpected cardiac tamponade. Triggers for tamponade include hypovolemia, paroxysmal tachyarrhythmia and intercurrent acute pericarditis. Diagnostic criteria
for cardiac tamponade are listed in Table 3 and Focus box 2. Pericardiocentesis is not necessary when the diagnosis can be made otherwise or the effusions are small or resolving under anti-inflammatory treatment. Hemodynamic compromise and cardiac tamponade is an absolute indication for drainage (Focus box 1). Patients with dehydration and hypovolemia may temporarily improve with intravenous fluids. Whenever possible, treatment should be aimed at the underlying etiology. Even in idiopathic effusions extended pericardial catheter drainage (3–13 days) was associated with a lower recurrence rates (6% vs. 23%) than in those without catheter drainage during the follow-up of 3.8 ± 4.3 years. Resistant neoplastic processes require intrapericardial treatment, percutaneous balloon pericardiodytomy or rarely pericardiectomy. Surgical approach is recommended only in patients with very large chronic effusion in whom repeated pericardiocentesis and/or intrapericardial therapy were not successful.

Constrictive pericarditis

Constrictive pericarditis is a rare but severely disabling consequence of the chronic inflammation of the pericardium, leading to an impaired filling of the ventricles and reduced ventricular function. Until recently, increased pericardial thickness has been considered an essential diagnostic feature of constrictive pericarditis. However, in the large surgical series from the Mayo clinic constriction was present in 18% of the patients with normal pericardial thickness. Tuberculosis, mediastinal irradiation, and previous cardiac surgical procedures are frequent causes of the disease, which can present in several pathoanatomical forms (Fig. 2). Constrictive pericarditis may rarely develop only in the epicardial layer in patients with previously removed parietal pericardium. Transient constrictive pericarditis is uncommon but important entity, since these patients are not indicated for pericardiectomy. Patients complain about fatigue, peripheral edema, breathlessness, and abdominal swelling, which may be aggravated by a protein-losing enteropathy. Typically, there is a long delay between the initial pericardial inflammation and the onset of constriction. In decompensated patients venous congestion, hepatomegaly, pleural effusions, and ascites may occur. Haemodynamic impairment of the patient can be additionally aggravated by a systolic dysfunction due to myocardial fibrosis or atrophy. Clinical, echocardiographic, and hemodynamic parameters can be derived from Table 4. Differential diagnosis has to include acute dilatation of the heart, pulmonary embolism, right ventricular infarction, pleural effusion, chronic obstructive lung diseases and restrictive cardiomyopathy. The best way to distinguish constrictive pericarditis from restrictive cardiomypathy is the analysis of respiratory changes with or without changes of preload by Doppler and/or tissue Doppler echocardiography.

Focus box 2 Determination of pulsus paradoxus

Pulsus paradoxus is defined as a drop in systolic blood pressure >10 mmHg during inspiration whereas diastolic blood pressure remains unchanged. It is easily detected by feeling the pulse. During inspiration, the pulse may disappear or its volume diminishes significantly. Clinically significant pulsus paradoxus is apparent when the patient is breathing normally. When present only in deep inspiration it should be interpreted with caution. The magnitude of pulsus paradoxus is evaluated by sphygmomanometry. If the pulsus paradoxus is present, the first Korotkoff sound is heard only during expiration. The blood pressure cuff is therefore inflated above the patient’s systolic pressure. During deflation, the first Korotkoff sound is intermittent. Correlation with the patient’s respiratory cycle identifies a point at which the sound is audible during expiration, but disappears in inspiration. As the cuff pressure drops, another point is reached when the first blood pressure sound is audible throughout the respiratory cycle. The difference is the measure of pulsus paradoxus.
Table 3 Diagnosis of cardiac tamponade

<table>
<thead>
<tr>
<th>Clinical presentation</th>
<th>Elevated systemic venous pressure**, hypotension**, pulsus paradoxus**, tachycardia**, dyspnoea or tachypnoea with clear lungs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precipitating factors</td>
<td>Drugs (cyclosporine, anticoagulants, thrombolytics, etc.), recent cardiac surgery, indwelling instrumentation, blunt chest trauma, malignancies, connective tissue disease, renal failure, sepsis**</td>
</tr>
<tr>
<td>ECG</td>
<td>Can be normal or non-specifically changed (ST-T wave), electrical alternans (QRS, rarely T), bradycardia (end-stage), Electromechanical dissociation (agonal phase)</td>
</tr>
<tr>
<td>Chest X-ray</td>
<td>Enlarged cardiac silhouette with clear lungs</td>
</tr>
<tr>
<td>M mode/2D echocardiogram</td>
<td>Diastolic collapse of the (1) anterior RV free wall**, RA collapse**, LA**, and very rarely LV collapse, increased LV diastolic wall thickness “pseudohypertrophy”, VCI dilatation (no collapse in inspirium), “swinging heart”</td>
</tr>
<tr>
<td>Doppler</td>
<td>Tricuspid flow increases and mitral flow decreases during inspiration (reverse in expiration) Systolic and diastolic flows are reduced in systemic veins in expirium and reverse flow with atrial contraction is increased**</td>
</tr>
<tr>
<td>M-mode colour Doppler</td>
<td>Large respiratory fluctuations in mitral/tricuspid flows**</td>
</tr>
<tr>
<td>Cardiac catheterisation</td>
<td>(1) Confirmation of the diagnosis and quantification of the haemodynamic compromise**</td>
</tr>
<tr>
<td></td>
<td>RA pressure is elevated (preserved systolic x descent and absent or diminished diastolic y descent)</td>
</tr>
<tr>
<td></td>
<td>RV mid-diastolic pressure elevated and equal to the RA and pericardial pressures (no dip-and-plateau configuration)</td>
</tr>
<tr>
<td></td>
<td>Pulmonary artery diastolic pressure is slightly elevated and may correspond to the RV pressure.</td>
</tr>
<tr>
<td></td>
<td>Pulmonary capillary wedge pressure is also elevated and nearly equal to intrapericardial and right atrial pressure.</td>
</tr>
<tr>
<td></td>
<td>LV systolic and aortic pressures may be normal or reduced.</td>
</tr>
<tr>
<td></td>
<td>(2) Documenting that pericardial aspiration is followed by haemodynamic improvement**</td>
</tr>
<tr>
<td></td>
<td>(3) Detection of the coexisting haemodynamic abnormalities (LV failure, constriction, pulmonary hypertension)</td>
</tr>
<tr>
<td></td>
<td>(4) Detection of associated cardiovascular diseases (cardiomyopathy, coronary artery disease)</td>
</tr>
<tr>
<td>RV/LV angiography</td>
<td>Atrial collapse and small hyperactive ventricular chambers.</td>
</tr>
<tr>
<td>Coronary angiography</td>
<td>Coronary compression in diastole.</td>
</tr>
<tr>
<td>Computer tomography</td>
<td>No visualisation of subepicardial fat along both ventricles, which show tube-like configuration and anteriorly drawn atriases</td>
</tr>
</tbody>
</table>

LA, left atrium, LV, left ventricle, RA, right atrium, RV, right ventricle, VCI, inferior vena cava.

*a Jugular venous distension is less notable in hypovolemic patients or in "surgical tamponade". An inspiratory increase or lack of fall of the pressure in the neck veins (Kussmaul sign), when verified with tamponade, or after pericardial drainage, indicates effusive-constrictive disease.

*b Heart rate is usually >100 beats/min, but may be lower in hypothyroidism and in uremic patients.

*c Pulsus paradoxus is absent in tamponade complicating atrial septal defect and in patients with significant aortic regurgitation.

*d Occasional patients are hypertensive especially if they have pre-existing hypertension.

*e Febrile tamponade may be misdiagnosed as septic shock.

*f Right ventricular collapse can be absent in elevated right ventricular pressure and right ventricular hypertrophy or in right ventricular infarction.

** If after drainage of pericardial effusion intrapericardial pressure does not fall below atrial pressure, the effusive-constrictive disease should be considered.
Pericardiectomy is the only treatment for permanent constriction. The indications are based upon clinical symptoms, echocardiography findings, CT/MRI, and heart catheterisation. There are two standard approaches, both aiming at resecting the diseased pericardium as far as possible:

1. **The antero-lateral thoracotomy** (fifth intercostal space) and **mediasternal sternotomy** (faster access to the aorta and right atrium for extracorporeal circulation). A primary installation of cardiopulmonary bypass is not recommended (diffuse bleeding following systemic heparinisation). If severe calcified adhesions between peri- and epicardium or a general affection of the epicardium ("outer porcelain heart") are present, surgery carries a high risk of either incomplete success or severe myocardial damage. An alternative approach in such cases may be a "laser shaving" using an Excimer laser. Areas of strong calcification or dense scaring may be left as islands to avoid major bleeding. Pericardiectomy for constrictive pericarditis has a mortality rate of 6–12%. The complete normalisation of cardiac haemodynamics is reported in only 60% of the patients. The deceleration time (DT) may remain prolonged and postoperative respiratory variations of mitral/tricuspid flow are found in 9–25%. Left ventricular ejection fraction can increase due to a better ventricular filling. Major complications include acute perioperative cardiac insufficiency and ventricular wall rupture. Cardiac mortality and morbidity at pericardiectomy is mainly caused by the pre-surgically unrecognised presence of myocardial atrophy or myocardial fibrosis (Fig. 2). Exclusion of patients with extensive myocardial fibrosis and/or atrophy reduced the mortality rate for pericardiectomy to 5%. Postoperative low cardiac output should be treated by fluid substitution and catecholamines, high doses of digitalis, and intraaortic balloon pump in most severe cases. If indication for surgery was established early, long-term survival after pericardiectomy corresponds to that of the general population. However, if severe clinical symptoms were present for a longer period before surgery, even a complete pericardiectomy may not achieve a total restitution.

Pericardial cysts

Congenital pericardial cysts are uncommon; they may be unilocular or multilocular, with the diameter from 1–5 cm. Inflammatory cysts comprise pseudocysts as well as encapsulated and loculated pericardial effusions, caused by rheumatic pericarditis, bacterial infection, particularly tuberculosis, trauma and cardiac surgery. Echinococcal cysts usually originate from ruptured hydatid cysts in the liver and lungs. Most patients are asymptomatic and cysts are detected incidentally on chest roentgenograms as an oval, homogeneous radio-dense lesion, usually at the right cardiophrenic angle. However, the patients can also present with chest discomfort, dyspnoea, cough or palpitations, due to the compression of the heart. Echocardiography is useful, but additional imaging by computed tomography (density readings) or magnetic resonance is often needed.

The treatment for congenital and inflammatory cysts is...
Table 4 Diagnostic approach in constrictive pericarditis

<table>
<thead>
<tr>
<th>Clinical presentation</th>
<th>Severe chronic systemic venous congestion associated with low cardiac output, including jugular venous distension, hypotension with a low pulse pressure, abdominal distension, oedema and muscle wasting</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECG</td>
<td>Can be normal, or reveal low QRS voltage, generalized T-wave inversion/flattening, LA abnormalities, atrial fibrillation, atrioventricular block, intraventricular conduction defects, or rarely pseudoinfarction pattern</td>
</tr>
<tr>
<td>Chest X-ray</td>
<td>Pericardial calcifications, pleural effusions</td>
</tr>
<tr>
<td>M mode/2D echocardiogram</td>
<td>Pericardial thickening and calcifications(^a) as well as the indirect signs of constriction: RA&LA enlargement with normal appearance of the ventricles, and normal systolic function Early pathological outward and inward movement of the interventricular septum ("dip-plateau phenomenon")(^72) Flattening waves at the LV posterior wall LV diameter is not increasing after the early rapid filling phase VCI and the hepatic veins are dilated with restricted respiratory fluctuations(^b)</td>
</tr>
<tr>
<td>Doppler</td>
<td>Restricted filling of both ventricles with respiratory variation >25% over the AV-valves(^c)</td>
</tr>
<tr>
<td>TEE</td>
<td>Measurement of the pericardial thickness(^50)</td>
</tr>
<tr>
<td>CT/MRI</td>
<td>Thickened and/or calcified pericardium, tube-like configuration of one or both ventricles, narrowing of one or both atrio-ventricular grooves, congestion of the caval veins(^56) enlargement of one or both atria</td>
</tr>
<tr>
<td>Cardiac catheterisation</td>
<td>"Dip and plateau" or "square route" sign in the pressure curve of the right and/or left ventricle Equalisation of LV/RV end-diastolic pressures in the range of 5 mmHg or less(^72,d)</td>
</tr>
<tr>
<td>RV/LV angiography</td>
<td>The reduction of RV&LV size and increase of RA&LA size During diastole a rapid early filling with stop of further enlargement ("dip-plateau")</td>
</tr>
<tr>
<td>Coronary angiography</td>
<td>In all patients over 35 years and in patients with a history of mediastinal irradiation, regardless of the age</td>
</tr>
</tbody>
</table>

\(^a\) Thickening of the pericardium is not always equal to constriction (absent in 18% of 143 surgically proven cases). When clinical, echocardiographic, or invasive haemodynamic features indicate constriction, pericardiectomy should not be denied on the basis of normal pericardial thickness.\(^65\)

\(^b\) Diagnosis is difficult in atrial fibrillation. Hepatic diastolic vein flow reversal in expirium is observed even when the flow velocity pattern is inconclusive.\(^59\)

\(^c\) Patients with increased atrial pressures or mixed constriction and restriction demonstrate <25% respiratory changes.\(^72\) A provocation test with head-up tilting or sitting position with decrease of preload may unmask the constrictive pericarditis.\(^70\)

\(^d\) In the early stage or in the occult form, these signs may not be present and the rapid infusion of 1–2 l of normal saline may be necessary to establish the diagnosis. Constrictive haemodynamics may be masked or complicated by valvular- and coronary artery disease.

\(^e\) In chronic obstructive lung disease mitral in-flow velocity will decrease nearly 100% during inspiration and increase during expiration. The mitral E-velocity is highest at the end of expiration (in constrictive pericarditis mitral E-velocity is highest immediately after start of expiration).\(^71\) In addition, superior vena cava flow increases with inspiration in chronic obstructive lung disease, whereas it does not change significantly with respiration in constrictive pericarditis.
percutaneous aspiration and ethanol sclerosis.84,85 If this is not feasible, video assisted thoracotomy or surgical resection may be necessary. The surgical excision of echinococcal cysts is not recommended. Percutaneous aspiration and instillation of ethanol or silver nitrate after pre-treatment with Albendazole (800 mg/day 4 weeks) is safe and effective.85

Specific forms of pericarditis

Viral pericarditis

Viral pericarditis is the most common infection of the pericardium. Inflammatory abnormalities are due to direct viral attack, the immune response (antiviral or antitumoral), or both.3,86 Early viral replication in pericardial and epicardial tissue elicits cellular and humoral immune responses against the virus and/or cardiac tissue. Viral genomic fragments in pericardial tissue may not necessarily replicate, yet they serve as a source of antigen to stimulate immune responses. Deposits of IgM, IgG, and occasionally IgA, can be found in the pericardium and myocardium for years.86 Various viruses cause pericarditis (entero-, echo-, adeno-, cytomegalo-, Ebstein Barr-, herpes simplex-, influenza, parvo B19, hepatitis C, HIV, etc.). Attacks of enteroviral pericarditis follow the seasonal epidemics of Coxsackie virus A+B and Echovirus infections.87 Cytomegalovirus pericarditis has an increased incidence in immunocompromised and HIV infected hosts.88 Infectious mononucleosis may also present with pericarditis. The diagnosis of viral pericarditis is not possible without the evaluation of pericardial effusion and/or pericardial/epicardial tissue, preferably by PCR or in-situ hybridisation (level of evidence B, class IIa indication) (Focus boxes 3–4). A four-fold rise in serum antibody levels is suggestive but not diagnostic for viral pericarditis (level of evidence B, class IIb indication).

Treatment of viral pericarditis is directed to resolve symptoms (see acute pericarditis), prevent complications, and eradicate the virus. In patients with chronic or recurrent symptomatic pericardial effusion and confirmed viral infection the following specific treatment is under investigation: (1) CMV pericarditis: hyperimmunoglobulin - 1 time per day 4 ml/kg on day 0, 4, and 8; 2 ml/kg on day 12 and 16; (2) Coxsackie B pericarditis: Interferon alpha or beta 2,5 Mio. IU/m² surface area s.c. 3 × per week; (3) adenovirus and parvovirus B19 perimyocarditis: immunoglobulin treatment: 10 g intravenously at day 1 and 3 for 6–8 hours.113

Pericardial manifestation of *human immunodeficiency virus (HIV)* infection can be due to infective, non-infective and neoplastic diseases (Kaposi sarcoma and/or lymphoma). Infective (myo)pericarditis results from the local HIV infection and/or from the other viral (cytomegalovirus, herpes simplex), bacterial (*S. aureus, K. pneumoniae, M. avium*, and *M. tuberculosis*) and fungal coinfections (*Cryptococcus neoformans*).114 In progressive disease the incidence of echocardiographically detected pericardial effusion is up to 40%.115 Cardiac tamponade is rare.116 During the treatment with retroviral compounds, lipodystrophy can develop (best demonstrated by MRI) with

Focus box 3 Analyses of pericardial effusion

Analyses of pericardial effusion can establish the diagnosis of viral, bacterial, tuberculous, fungal, cholesterol, and malignant pericarditis.7 It should be ordered according to the clinical presentation. Cytology and tumour markers (carcinoembryonic antigen (CEA), alpha-feto protein (AFP), carbohydrate antigens CA 125, CA 72-4, CA 15-3, CA 19-9, CD-30, CD-25, etc.) should be performed in suspected malignant disease. In suspected tuberculosis acid-fast bacilli staining, mycobacterium culture or radiometric growth detection (e.g., BACTEC-460), adenosine deaminase (ADA), interferon (IFN)-gamma, pericardial lysozyme, and as well as PCR analyses for tuberculosis should be performed (indication I, level of evidence B).11,89-100 Differentiation of tuberculous and neoplastic effusion is virtually absolute with low levels of ADA and high levels of CEA.94 In addition, very high ADA levels have prognostic value for pericardial constriction.95 However, it should be noted that PCR is as sensitive (75% vs. 83%), but more specific (100% vs. 78%) than ADA estimation for tuberculous pericarditis.99 In suspected bacterial infection at least three cultures of pericardial fluid for aerobes and anaerobes as well as the blood cultures are mandatory (level of evidence B, indication I). PCR analyses for cardiotropic viruses discriminate viral from autoreactive pericarditis (indication IIa, level of evidence B).2 Analyses of the pericardial fluid specific gravity (>1.015), protein level (>3.0 g/dl; fluid/serum ratio >0.5), LDH (>200 mg/dl; serum/fluim >0.6), and glucose (exudates vs. transudates = 77.9 ± 41.9 vs. 96.1 ± 50.7 mg/dl) can separate exudates from transudates but are not directly diagnostic (class IIb).14 However, purulent effusions with positive cultures have significantly lower fluid glucose levels (47.3 ± 25.3 vs. 102.5 ± 35.6 mg/dl) and fluid to serum ratios (0.28 ± 0.14 vs. 0.84 ± 0.23 mg/dl), than non-infectious effusions.11 White cell count (WBC) is highest in inflammatory diseases, particularly of bacterial and rheumatologic origin. A very low WBC count is found in myxedema. Monocyte count is highest in malignant effusions and hypothyroidisms (79 ± 27% and 74 ± 26%), while rheumatoid and bacterial effusions have the highest proportions of neutrophils (78 ± 20% and 69 ± 23%). Compared with controls, both bacterial and malignant pericardial fluids have higher cholesterol levels (49 ± 18 vs. 121 ± 20 and 117 ± 33 mg/dl).11

Gram’s stains in pericardial fluid have a specificity of 99%, but a sensitivity of only 38% for exclusion of the infection in comparison to bacterial cultures.14 Combination of epithelial membrane antigen, CEA and vimentin immunocytochemical staining can be useful to distinguish reactive mesothelial and adenocarcinoma cells.101
intense paracardial fat deposition leading to heart failure. Treatment is symptomatic, while in large effusions and cardiac tamponade pericardiocentesis is necessary. The use of corticoid therapy is contraindicated except in patients with secondary tuberculous pericarditis, as an adjunct to tuberculostatic treatment (level of evidence A, indication I). Treatment in patients with pericardial tamponade is indicated by the presence of cardiac tamponade, toxicity, and constriction. It is usually a complication of an infection originating elsewhere in the body, arising by contiguous spread or haematogenous dissemination. Predisposing conditions are pericardial effusion, immunosuppression, chronic diseases (alcohol abuse, rheumatoid arthritis, etc), cardiac surgery and chest trauma. The disease appears as an acute, fulminating infectious illness with short duration. Percutaneous pericardiocentesis must be promptly performed. Obtained pericardial fluid should undergo urgent Gram, acid-fast and fungal staining, followed by cultures of the pericardial and body fluids (level of evidence B, indication I). Rinsing of the pericardial cavity, combined with effective systemic antibiotic therapy is mandatory (antistaphyloccocal antibiotic plus aminoglycoside, followed by tailored antibiotic therapy according to pericardial fluid and blood cultures). Intrapercardial instillation of antibiotics (e.g., gentamycin) is useful but not sufficient. Frequent irrigation of the pericardial cavity with urokinase or streptokinase, using intermittent pericardial irrigation with antibiotics (e.g., gentamycin, vancomycin) is useful but not sufficient. Frequent irrigation of the pericardial cavity with urokinase or streptokinase, using intermittent pericardial irrigation with antibiotics (e.g., gentamycin, vancomycin) is useful but not sufficient. Frequent irrigation of the pericardial cavity with urokinase or streptokinase, using intermittent pericardial irrigation with antibiotics (e.g., gentamycin, vancomycin) is useful but not sufficient.

Tuberculous pericarditis

In the last decade TBC pericarditis in the developed countries has been primarily seen in immunocompromised patients (AIDS). The mortality rate in untreated acute effusive TBC pericarditis approaches 85%. Pericardial constriction occurs in 30–50%. The clinical presentation is variable: acute pericarditis with or without effusion; cardiac tamponade, silent, often large pericardial effusion with a relapsing course, toxic symptoms with persistent fever, acute constrictive pericarditis, subacute constrictive effusion, constrictive, or chronic constrictive pericarditis, and pericardial calcifications. The diagnosis is made by the identification of Mycobacterium tuberculosis in the pericardial fluid or tissue, and/or the presence of caseous granulomas in the pericardium. Importantly, PCR can identify DNA of Mycobacterium tuberculosis rapidly from only 1 μL of pericardial fluid. High adenosine deaminase activity and interferon gamma concentration in pericardial effusion are also diagnostic, with a high sensitivity and specificity (Focus box 3): Both pericardiocentesis and pericardial biopsy have also improved the diagnostic accuracy for TBC pericarditis. Pericardial biopsy enables rapid diagnosis with better sensitivity than pericardiocentesis (100 vs. 33%).

Pericarditis in a patient with proven extracardiac tuberculosis is strongly suggestive of TBC aetiology (several sputum cultures should be taken). The tuberculin skin test may be false negative in 25–33% of tests and false positive in 30–40% of patients. More accurate enzyme-linked immunosorbent assay (ELISA) tests detect T-cells specific for Mycobacterium tuberculosis antigen. Perimyocardial TBC involvement is also associated with high serum titres of antomyelommal and antmyosin antibodies. The diagnostic yield of pericardiocentesis in TBC pericarditis ranges from 30–76% according to the methods applied for the analyses of pericardial effusion. Pericardial fluid demonstrates high specific gravity, high protein levels, and high white-cell count (from 0.7–54 x 10³/l).
<table>
<thead>
<tr>
<th>Table 5 Differential diagnosis of the specific forms of pericarditis</th>
<th>Viral</th>
<th>Bacterial</th>
<th>Tuberculuous</th>
<th>Autoreactive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiotoxic microbial agents</td>
<td>Enterov-, echo-, adeno-, cytomegalo, Ebstein Barr, herpes simplex, influenza, parvo B19, hepatitis A,B,C virus, HIV</td>
<td>Staphylococci, pneumococci, streptococci, Neisseria, proteus, gram negative rods, Legionella</td>
<td>Mycobacterium tuberculuous</td>
<td>Autoimmune process in the absence of viral and bacterial agents</td>
</tr>
<tr>
<td>Etiological evidence by</td>
<td>PCR or in situ hybridisation (evidence level B, indication IIa)</td>
<td>Gram-stain, bacterial culture, PCR for Borrelia and chlamydia pneumoniae (evidence level B, indication I)</td>
<td>Ziehl-Neelsen, auramin 0 stain, culture, PCR (evidence level B, indication I)</td>
<td>Ig-binding to peri- and epicardium, negative PCR for cardiotoxic agents, pericarditis (evidence level B, indication IIa)</td>
</tr>
<tr>
<td>Incidence (%) Western countries</td>
<td>30</td>
<td>5–10 per 100,000 patients</td>
<td><4 (much more in Africa and South America)</td>
<td>20–30</td>
</tr>
<tr>
<td>Male: female ratio</td>
<td>3:1</td>
<td>1:1</td>
<td>Alcohol abuse, HIV infection</td>
<td>1:1</td>
</tr>
<tr>
<td>Clinical features</td>
<td>Identical to acute pericarditis, often subfebrile</td>
<td>Spiking fever, fulminant, tachycardia, pericardial rubs</td>
<td>Subfebrile, chronic</td>
<td>Subfebrile, chronic</td>
</tr>
<tr>
<td>Effusion size</td>
<td>Variable, mostly small</td>
<td>Variable</td>
<td>Variable, mostly large</td>
<td>Variable</td>
</tr>
<tr>
<td>Tamponade</td>
<td>Infrequent</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Spontaneous Remission</td>
<td>Frequent</td>
<td>Rare</td>
<td>Frequent</td>
<td>Frequent</td>
</tr>
<tr>
<td>Recurrence rate</td>
<td>30–50%</td>
<td>Purulent</td>
<td>Serous</td>
<td>Serous</td>
</tr>
<tr>
<td>Aspect of PE</td>
<td>Serous/serosanginous</td>
<td>High</td>
<td>Intermediate</td>
<td>Intermediate</td>
</tr>
<tr>
<td>Protein content</td>
<td>>3 g/dL</td>
<td>>10000/mL</td>
<td>Granulocytes and macrophages (massive) ADA-negative</td>
<td>Granulocytes and macrophages (intermediate) ADA-positive (>40 U/mL)</td>
</tr>
<tr>
<td>Leukocyte count (PE)</td>
<td>Activated lymphocytes and macrophages (sparse) ADA-negative</td>
<td>Granulocytes and macrophages (massive) ADA-negative</td>
<td>Granulocytes and macrophages (massive) ADA-negative</td>
<td>Granulocytes and macrophages (massive) ADA-negative</td>
</tr>
<tr>
<td>Pericardial fluid analyses</td>
<td>Lymphocytic peri-/epicarditis, PCR positive for cardiotoxic virus</td>
<td>Leukocytic epicarditis</td>
<td>Caseous granuloma, PCR</td>
<td>Lymphocytic peri-/epicarditis, PCR negative</td>
</tr>
<tr>
<td>Peri- and epicardial biopsy</td>
<td>Depending on agent and tamponade</td>
<td>100%</td>
<td>85%</td>
<td>In untreated tamponade</td>
</tr>
<tr>
<td>Mortality if untreated</td>
<td>Drainage, if needed, no intrapericardial corticoids</td>
<td>Drainage and rinsing (saline) gentamycin 80 mg i.p.,</td>
<td>Drainage, if needed</td>
<td>Drainage, i.p. triamcinolon (evidence B, indication IIa)</td>
</tr>
<tr>
<td>Intra-pericardial treatment</td>
<td>Rarely needed</td>
<td>Promptly needed (evidence level B, indication I)</td>
<td>Rarely needed</td>
<td>Rarely needed</td>
</tr>
<tr>
<td>Systemic treatment</td>
<td>I.V. immunoglobulins, IFN (in enteroviral pericarditis) s.c.</td>
<td>I.V. antibiotics</td>
<td>Tuberculostatic + prednisone</td>
<td>NSAIDs, Colchicine, prednisolone/azathioprin</td>
</tr>
<tr>
<td>Constriction</td>
<td>Rare</td>
<td>Frequent</td>
<td>Frequent (30–50%)</td>
<td>Rare</td>
</tr>
</tbody>
</table>
Various antituberculous drug combinations of different lengths (6, 9, 12 months) have been applied. However, only patients with proven or very likely TBC pericarditis should be treated. Prevention of constriction in chronic pericardial effusion of undetermined aetiology by “ex iuvantibus” antitubercular treatment was not successful. The use of steroids remains controversial. A meta analysis of patients with effusive and constrictive TBC pericarditis suggested that tuberculosis treatment combined with steroids might be associated with fewer deaths, less frequent need for pericardiocentesis or pericardectomy (level of evidence A, indication Ila). If given, prednisone should be administered in relatively high doses (1–2 mg/kg per day) since rifampicin induces its liver metabolism. This dose is maintained for 5–7 days and is progressively reduced to discontinuation in 6–8 weeks. In, in spite of combination therapy, constriction develops pericardiectomy is indicated (level of evidence B, class I indication).

Pericarditis in renal failure

Renal failure is a common cause of pericardial disease, producing large pericardial effusions in up to 20% of patients. Two forms have been described: (1) *Uremic pericarditis* – in 6–10% of patients with advanced renal failure (acute or chronic) before dialysis has been instituted or shortly thereafter. It results from inflammation of the visceral and parietal pericardium and correlates with the degree of azotemia (BUN >60 mg/dl). (2) *Diagnosis-associated pericarditis* – in up to 13% of patients on maintenance haemodialysis, and occasionally with chronic peritoneal dialysis due to inadequate dialysis and/or fluid overload. Pathologic examination of the pericardium shows adhesions between the thickened pericardial membranes (“bread and butter” appearance). The clinical features may include fever and pleuritic chest pain but many patients are asymptomatic. Pericardial rubs may persist even in large effusions or may be transient. Due to autonomic impairment in uremic patients, heart rate may remain slow (60–80 beats/min) during tamponade, despite fever and hypotension. Acytemia, due to induced resistance to endomyocardial biopsy; (6) exclusion of systemic, metabolic disorders, and uraemia. Intrapericardial treatment with triamcinolone is highly efficient with rare side effects.

Pericarditis occurs in systemic autoimmune diseases: rheumatoid arthritis, systemic lupus erythematosus, progressive systemic sclerosis, polymyositis/dermatomyositis, mixed connective tissue disease, seronegative spondyloarthropathies, systemic and hypersensitivity vasculitides, Behçet syndrome, Wegener granulomatosis, and sarcoidosis. Intensified treatment of the underlying disease and symptomatic management are indicated (evidence level B, indication I).

The post-cardiac injury syndrome: postpericardiotomy syndrome

Post-cardiac injury syndrome develops within days to months after cardiac, pericardial injury or both. It resembles the post-myocardial infarction syndrome, both appearing to be variants of a common immunopathetic process. Unlike post-myocardial infarction syndrome, post-cardiac injury syndrome acutely provokes a greater antihist antibody response (antisarcolemmal and antifibrillar), probably related to more extensive release of antigenic material. Pericardial effusion also occurs after orthotopic heart transplantation (21%).
It is more frequent in patients receiving aminocaproic acid during the operation.151 Cardiac tamponade after open heart surgery is more common following valve surgery than coronary artery bypass grafting (CABG) alone and may be related to the preoperative use of anticoagulants.152 Constrictive pericarditis may also occur after cardiac surgery. Warfarin administration in patients with early postoperative pericardial effusion imposes the greatest risk, particularly in those who did not undergo pericardiocentesis and drainage of the effusion.153 Symptomatic treatment is as in acute pericarditis (NSAIDs or colchicine for several weeks or months, even after disappearance of effusion).154 Long-term (3–6 months) oral corticoids or preferably pericardiocentesis and intrapericardial instillation of triamcinolone (300 mg/m2) are therapeutic options in refractory forms. Redo surgery and pericardiectomy are very rarely needed. Primary prevention of postpericardiotomy syndrome using short-term perioperative steroid treatment or colchicine is under investigation.155

Postinfarction pericarditis

Two forms of postinfarction pericarditis can be distinguished: an “early” form (pericarditis epistensenocardica) and a “delayed” form (Dressler’s syndrome).156 **Epistensenocardic pericarditis**, caused by direct exudation, occurs in 5–20% of transmural myocardial infarctions but is clinically discovered rarely. **Dressler’s syndrome** occurs from one week to several months after clinical onset of myocardial infarction with symptoms and manifesta- tions similar to the post-cardiac injury syndrome. It does not require transmural infarction157 and can also appear as an extension of epistensenocardic pericarditis. Its incidence is 0.5–5%158 and is still lower in patients treated with thrombolytics (<0.5%),159 but was more frequent in cases of pericardial bleeding after antithrombotic treatment.156,160 Of note, ECG changes are often over- shadowed by myocardial infarction changes. Stage I ECG changes are uncommon and suggest “early” post-myocar- dial infarction syndrome whereas failure to evolve or “resurrection” of previously inverted T waves strongly suggest myocardial infarction pericarditis.161,162 Postin- farction pericardial effusion >10 mm is most frequently associated with haemopericardium, and two thirds of these patients may develop tamponade/free wall rupture.163 Urgent surgical treatment is life saving. How- ever, if the immediate surgery is not available or contraindicated pericardiocentesis an intrapericardial fibrin-glue instillation could be an alternative in subacute tamponade.163,164

Hospitalisation to observe for tamponade, differential diagnosis, and adjustments of treatment is needed. Ibuprofen, which increases coronary flow, is the agent of choice.165 Aspirin, up to 650 mg every 4 hours for 2 to 5 days has also been successfully applied. Other nonste- roidal agents risk thinning the infarction zone.164,166 Corticosteroid therapy can be used for refractory symp- toms only but could delay myocardial infarction healing (level of evidence B, class IIa indication).7

Traumatic pericardial effusion and haemopericardium in aortic dissection

Direct pericardial injury can be induced by accidents or iatrogenic wounds.7,167–170 Blood loss, vasoconstriction, and haematotherax leading to severe hypotension and shock may mask pulses paradoxus.170 Thoracotomy and surgical repair should be performed.

Iatrogenic tamponade occurs most frequently in percutaneous mitral valvuloplasty, during or after transseptal puncture, particularly, if no biplane cathe- terisation laboratory is available and a small left atrium is present. Whereas the puncture of the interatrial septum is asymptomatic, the passage of the free wall induces chest-pain immediately. If high-pressure contain- ing structures are punctured, rapid deterioration occurs. However, if only the atrial wall is passed, the onset of symptoms and the tamponade may be delayed for 4 to 6 hours. Rescue pericardiocentesis is successful in 95–100% with a <1% mortality162 (Table 6).

Transsection of the coronary artery and acute or subacute cardiac tamponade may occur during percuta- neous coronary interventions.172,173 A breakthrough in the treatment of coronary perforation is membrane- covered graft stents.177,178 Perforation of the coronary artery by a guidewire is not infrequent and causes very rarely a relevant pericardial haemorrhage.

During right ventricular endomyocardial biopsy, due to the low stiffness of the myocardium, the catheter may pass the myocardium, particularly, when the biopsy has not been opened before reaching the endocardial border. The rate of perforation is reported to be in the range of 0.3–5%, leading to tamponade and circulatory collapse in less than half of the cases.180,181,194 The incidence of pericardial haemorrhage in left ventricular endomyocardial biopsy is lower (0.1–3.3%). Frank card- iac perforations seem to be accompanied by sudden bradycardia and hypotension.180 Severe complications, leading to procedure related mortality were reported in only 0.05% in a worldwide survey of more than 6000 cases181 and in none of the 2537 patients from the registry of an experienced reference centre.194

Pacemaker leads penetrating the right ventricle or epicardial electrodes may cause pericarditis with tam- ponade, adhesions, or constriction.190,193 A right bundle branch block instead of a usually induced left bundle branch block is a clue.

Blunt chest trauma is the major risk of car accident. The deceleration force can lead to myocardial contusion with intrapericardial haemorrhage, cardiac rupture, pericardial rupture, or herniation. Transesophageal echocardiography in the emergency room183 or immedi- ate computed tomography should be performed. Pericardial laceration and partial extrusion of the heart into the mediastinum and pleural space may also occur after injury.186

In dissection of the ascending aorta (pericardial ef- fusion can be found in 17–45% of the patients and in 48% of the autopsy cases (Table 6).184 In a clinical series of aortic dissection, pericardial tamponade was found by CT,185 MRI,186 or echocardiography187 in 17–33% of
<table>
<thead>
<tr>
<th>Effusion due to</th>
<th>Incidence (%)</th>
<th>Mortality (%)</th>
<th>Management</th>
<th>Comment/Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iatrogenic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transeptal puncture</td>
<td>1–3</td>
<td><1%</td>
<td>Rescue pericardiocentesis, if needed</td>
<td>Use biplane angio-graphy^{171}</td>
</tr>
<tr>
<td>Coronary artery perforation during PTCA (guidewire only)</td>
<td>Not Infrequent</td>
<td>Not available</td>
<td>Watchful waiting by withdrawal of guidewire</td>
<td>Reverse anticoagulation</td>
</tr>
<tr>
<td>Coronary artery transection during PTCA</td>
<td>0.3–3.2</td>
<td>Not available</td>
<td>sealing by graft stents (best) or perfusion catheters with balloon occlusion of perforated vessel, if pericardial puncture is need reinfusion of recovered blood in vein avoids anaemia.</td>
<td>Surgery only if >30% of myocardium at stake or bleeding cannot be stopped^{172,173}</td>
</tr>
<tr>
<td>Rotablation</td>
<td>0.1–3</td>
<td>Not available</td>
<td>See above</td>
<td>See above^{172,173}</td>
</tr>
<tr>
<td>Transluminal extraction atherectomy (atherocath)</td>
<td>0–2 %</td>
<td>Not available</td>
<td>See above</td>
<td>See above</td>
</tr>
<tr>
<td>Excimer laser angioplasty</td>
<td>1.7–3%</td>
<td>Not available</td>
<td>See above</td>
<td>See above^{173}</td>
</tr>
<tr>
<td>High pressure stenting</td>
<td><2% (?)</td>
<td>Not available</td>
<td>See above</td>
<td>See above^{173}</td>
</tr>
<tr>
<td>Mitral valvuloplasty</td>
<td>1–3%</td>
<td><1%</td>
<td>See above</td>
<td>See above^{173}</td>
</tr>
<tr>
<td>Left ventricular biopsy (LV-EMB)</td>
<td>0.1–3.3%</td>
<td>0%</td>
<td>Routine echocardiography post EMB, pericardiocentesis, if needed; reverse anticoagulation</td>
<td>Routine echocardiography post EMB, pericardiocentesis, if needed; reverse anticoagulation^{180,181,194}</td>
</tr>
<tr>
<td>Right ventricular biopsy (RV-EMB)</td>
<td>0.3–5%</td>
<td>0–0.05%</td>
<td>Routine echocardiography post EMB, pericardiocentesis, if needed; reverse anticoagulation</td>
<td>Routine echocardiography post implantation, pericardiocentesis, if needed^{180,181,194}</td>
</tr>
<tr>
<td>Pacemaker leads</td>
<td>0–3–3.1%</td>
<td>0.1%</td>
<td>Routine echocardiography post implantation, pericardiocentesis, if needed</td>
<td>Pericardial effusion with/without tamponade^{190,191}, postpericardiotomy syndrome^{192}, constrictive pericarditis^{193}</td>
</tr>
<tr>
<td>Other causes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Injury (direct: e.g., stabbing indirect: compression, closed chest massage)</td>
<td>Not available</td>
<td>Often lethal</td>
<td>Direct: surgery (see text) Indirect: pericardiocentesis or surgery</td>
<td>Particularly in De Bakey I + II = Stanford type A^{194,199}</td>
</tr>
<tr>
<td>Aortic dissection</td>
<td>48% post mortem, 17–45% in clinical series</td>
<td>Lethal if not operated</td>
<td>Transoesophageal echo, CT or MRI, immediate surgery</td>
<td></td>
</tr>
</tbody>
</table>
patients with type I dissection and 18–45% in type II dissection and 6% in type III dissection. Pericardiocentesis is contraindicated, due to the risk of intensified bleeding and extension of the dissection. Surgery should be performed immediately (evidence level B, indication I).

Neoplastic pericarditis

Primary tumours of the pericardium are 40 times less common than the metastatic ones. Mesothelioma, the most common of the primary tumours, is almost always incurable. The most common secondary malignant tumours are lung cancer, breast cancer, malignant melanoma, lymphomas, and leukemias. Effusions may be small or large with an imminent tamponade (frequent recurrences) or constriction. It even may be the initial sign of malignant disease. With small malignant effusions most patients are asymptomatic. The onset of dyspnoea, cough, chest pain, tachycardia, jugular venous distension is observed when the volume of fluid exceeds 500 ml. Pulsus paradoxus, hypotension, cardiogenic shock and paradoxical movement of the jugular venous pulse are important signs of cardiac tamponade. The diagnosis is based on the confirmation of the malignant infiltration within the pericardium. Of note, in almost 2/3 of the patients with documented malignancy pericardial effusion is caused by non-malignant diseases, e.g., radiation pericarditis, or opportunistic infections.

The chest roentgenogram, CT, and MRI may reveal mediastinal widening, hilar masses, and pleural effusion. The analyses of pericardial fluid, pericardial or epicardial biopsy are essential for the confirmation of malignant pericardial disease (level of evidence B, indication I) (Focus boxes 3–4).

Treatment of cardiac tamponade is a class I indication for pericardiocentesis. The following steps are recommended in suspected neoplastic pericardial effusion without tamponade: (1) systemic antineoplastic treatment as baseline therapy which can prevent recurrences in up to 67% of cases (level of evidence B, class I indication); (2) pericardiocentesis to relieve symptoms and establish diagnosis (level of evidence B, class IIa indication); (3) intrapericardial instillation of cytostatic/sclerosing agent (level of evidence B, class IIa indication). Pericardial drainage is recommended, in all patients with large effusions because of the high recurrence rate (40–70%) (level of evidence B, indication I). Prevention of recurrences may be achieved by intrapericardial instillation of sclerosing, cytotoxic agents, or immunomodulators. Intrapерicardial treatment tailored to the type of the tumour indicates that administration of cisplatin is most effective in secondary lung cancer and intrapericardial instillation of thiotepa was more effective in breast cancer pericardial metastases.

No patient showed signs of constrictive pericarditis (for both agents level of evidence B, indication IIa). Tetracyclines as sclerosing agents also control the malignant pericardial effusion in around 85% of cases, but side effects and complications are quite frequent: fever (19%), chest pain (20%), and atrial arrhythmias (10%) (level of evidence B, indication IIb). Although classic sclerotherapy after intrapericardial instillation of tetracyclines has yielded very good results, it is not widely accepted because of the logistic problems connected with their radioactivity (level of evidence B, indication IIa). Radiation therapy is very effective (93%) in controlling malignant pericardial effusion (level of evidence B, indication IIa) in patients with radiosensitive tumours such as lymphomas and leukemias. However, radiation of the heart can cause myocarditis and pericarditis by itself. Subxyphoid pericardiectomy is indicated when pericardiocentesis cannot be performed (level of evidence B, indication IIb). The procedure can be carried out in local anaesthesia, but complications include myocardial laceration, pneumothorax, and mortality.

Fungal pericarditis occurs mainly in immunocompromised patients or in the course of endemic-acquired fungal infections. Fungal pericarditis is mainly due to endemic fungi (Histoplasma, Coccidioides), or nonendemic – opportunistic fungi (Candida, Aspergillus, Blastomyces) and semifungi (Nocardia, Actinomyces). Diagnosis is obtained by staining and culturing pericardial fluid or tissue. Antifungal antibodies in serum are also helpful in establishing the diagnosis of fungal infection. Antifungal treatment with fluconazole, ketoconazole, itraconazole, amphotericin B, liposomal amphotericin B or amphotericin B lipid complex is indicated (level of evidence B, indication I). Corticosteroids and NSAIDs can support the treatment with antifungal drugs (level of evidence C, indication IIa). Patients with pericarditis in the course of histoplasmosis do not need antifungal therapy, but respond to nonsteroidal anti-inflammatory drugs given during 2–12 weeks. Sulphonamides are the drugs of choice for a nocardiosis infection. Combination of three antibiotics including penicillin should be given for actinomycosis (level of evidence C, indication I).
Pericardiocentesis or surgical treatment is indicated for haemodynamic impairment. Pericardiectomy is indicated in fungal constrictive pericarditis (evidence level C, indication I).

Radiation pericarditis
The probability to develop radiation-induced pericarditis is influenced by the applied source, dose, its fractionation, duration, radiation exposed volume, form of mantle field therapy, and the age of the patients. Radiation induced pericarditis may occur already during the therapy or months and years later – with latency of up to 15–20 years. The effusion may be serous or haemorrhagic, later on with fibrous adhesions or constriction, typically without tissue calcification. The symptoms may be masked by the underlying disease or the applied chemotherapy. Imaging should start with echocardiography, followed by cardiac CT or MRI if necessary. Pericarditis without tamponade may be treated conservatively or by pericardiocentesis for diagnostic purposes or if haemodynamic compromise/tamponade occurs. Pericardial constriction may happen in up to 20% of patients, requiring pericardiectomy. The operative mortality is high (21%) and the postoperative five years survival rate is very low (1%); mostly due to myocardial fibrosis.

Chylopericardium
Chylopericardium refers to a communication between the pericardial sac and the thoracic duct, as a result of trauma, congenital anomalies, or as a complication of open-heart surgery, mediastinal lymphangiomas, lymphangiomatous hamartomas, lymphangiectasia, and obstruction or anomalies of the thoracic duct. Infection, tamponade or constriction may aggravate the prognosis. The pericardial fluid is sterile, odourless, and opalescent with a milky white appearance and the microscopic finding of fat droplets. The chylous nature of the fluid is confirmed by its alkaline reaction, specific gravity between 1010 and 1021; Sudan III stain for fat, the high concentrations of triglycerides (5–50 g/l) and protein (22–60 g/l). Enhanced computed tomography alone or combined with lymphography, can identify not only the location of the thoracic duct but also its lymphatic connection to the pericardium. Treatment depends on the aetiology and the amount of chylous accumulation. Chylopericardium after thoracic or cardiac operation is preferably treated by pericardiocentesis and diet (medium chain triglycerides). If further production of chylous effusion continues, surgical treatment is mandatory (level of evidence B, indication I). When conservative treatment and pericardiocentesis fail, pericardo-peritoneal window is a...
reasonable option.231 232 Alternatively, when the course of the thoracic duct was precisely identified, its ligation and resection just above the diaphragm is the most effective treatment.233 In second ary chylopericardium the underlying disease should be treated.

Drug- and toxin-related pericarditis
Pericardial reactions to drugs are rare. However, several medications and toxic substances can induce pericarditis, tamponade, adhesions, fibrosis, or constriction (Table 7).7 234 Mechanisms include drug induced lupus reactions, idiosyncrasy, “serum sickness”, foreign substance reactions, and immunopathy. Management is based on the discontinuation of the causative agent and symptomatic treatment.

Pericardial effusion in thyroid disorders
Pericardial effusion occurs in 5–30% of patients with hypothyroidism.7 Fluid accumulates slowly and tamponade occurs rarely. In some cases cholesterol pericarditis may be observed. The diagnosis of hypothyroidism is based on serum levels of thyroxin and thyroid stimulating hormone. Bradycardia, low-voltage of the QRS and T wave inversion or flattening in the ECG, cardiomegaly in the roentgenogram and pericardial effusion in echocardiography, as well as a history of radiation induced thyroid dysfunction,235 myopathy, ascites, pleural effusion and uveal oedema may be observed.235 239 Therapy with thyroid hormone decreases pericardial effusion (level of evidence B, indication I).

Pericardial effusion in pregnancy
There is no evidence that pregnancy affects susceptibility to pericardial disease. However, many pregnant women develop a minimal to moderate clinically silent pericardial disease. There is no evidence that pregnancy affects susceptibility.240 Interestingly, pregnancy may prematurely close the ductus arteriosus, and colchicine is contraindicated in pregnancy. Pericardiectomy and pericardioectomy can be safely performed if necessary and do not impose a risk for subsequent pregnancies.235 244 Foetal pericardial fluid can be detected by echocardiography after 20 weeks’ gestation and is normally 2 mm or less in depth. More fluid should raise questions of hydrops foetalis, Rh disease, hydrops bimini, and immunopathy or maternally transmitted mycoplasmal or other infections, and neoplasia.245

Acknowledgements
Members of the Task Force have the pleasure to acknowledge participation of Prof. Dr. Annalisa Angelini (Padua, I) and Dr. Steffen Lamparter (Marburg, D) in preparation of the sections of the Statement on pericardial pathology and analyses of pericardial effusion as well as the kind technical assistance of Ms. Veronica Dean (European Heart House). Special thanks to Professor Eloisa Arbustini (Pavia, I) for her significant contribution to the review process of these guidelines.

References

137. Oliva PB, Hammill SC, Edwards WD. Electrocadiographic diagnosis of postinfarction regional pericarditis: ancillary observations regarding the effect of reperfusion on the rapidity and amplitude of T

